

NBU-003-1262001 Seat No. _____

M. Phil. (Sem. II) (CBCS) Examination

April / May - 2017

Mathematics: 20001

(Topology) (New Course)

Faculty Code: 003

Subject Code: 1262001

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 Instructions: (1) There are five questions in this paper. (2) Each question carries 14 marks. (3) All questions are compulsory 1 Fill in the blanks: (Each question carries two marks) (a) If $f: X \to \mathbb{R}$ is a continuous function then the zero set of f is a countable intersection of sets. (b) Every space X is embedded in its Stone – Cech compactification. (c) If I is a Z – ideal which contains a prime ideal then I is a (d) In $\mathbb R$ with lower limit topology every closed subset isembedded in $\mathbb R$. (e) In C (N) every ideal is aideal. (f) If A is a commutative Banach Algebra with multiplicative identity then its maximal ideal space is and (g) Then function J (n) is contained in every...... ideal in C* (N). 2 Attempt any two of the following: 7 State and prove the necessary and sufficient condition under which a C* - embedded subset of a space is C - embedded. Prove that an ideal M is a maximal ideal if and only if Z(M) is a Z – ultra filter. 7 (b) (c) (i) Give an example of an ideal in $C^*(\mathbb{R})$ which is not a fixed ideal. (ii) Prove for any ideal I, $Z^{-1}(Z(I))$ is a Z – ideal.

2	All are compulsory:	
3		4
(a)	Give an example of a Z – ideal which is contained in a unique maximal ideal in C (\mathbb{R})	
(b)	Prove that intersection of two maximal ideals in C (X) cannot be a prime ideal.	4
(c)	Give an example of an ideal in $C^*(\mathbb{N})$ which is not the intersection of any ideal of	4
	$C(N)$ with $C^*(N)$.	
	OR	
3	All are compulsory:	
(a)	Prove that the countable intersection of zero sets is a zero set.	5
(b)	Give an example of a subset of \mathbb{R} which is not C^* - embedded in \mathbb{R} .	4
(c)	Prove that intersection of any family of Z – ideal is a Z – ideal.	5
4	Attempt any two of the following:	
(a)	Prove that a space X is compact if and only if every maximal ideal in C*(X) is fixed.	7
(b)		7
` '	(i) If Z_1 and Z_2 are disjoint zero sets in X then $Cl_T(Z_1)$ and $Cl_T(Z_2)$ are disjoint.	
	(ii) If Z_1 and Z_2 are zero sets in X then $Cl_T(Z_1 \cap Z_2) = Cl_T Z_1 \cap Cl_T Z_2$.	
(c)	Let X be a compact Hausdorff space and C (X) denote the Banach Algebra of all	7
` '	complex valued continuous functions on X. Prove that	
	(i) For any closed subset F of X the set $I_F = \{f \in C(X) / f(F) = \{0\}\}\$ is a closed ideal	

5 Do as directed: (Each question carries two marks)

Give reason: why $\mathbb{R} \setminus \{0\}$ is not a zero set?

in C (X).

- Give a continuous function $f: \mathbb{R} \to \mathbb{R}$ for which Z(f) is a countable infinite set. (b)
- (c) Suppose $f \in C(X)$ and $A = \{x \in X \mid f(x) \ge \sqrt{2}\}$. Is A a zero set? Give reason.
- Suppose f(x) = x for all x in \mathbb{R} . Let I be the principal ideal generated by f(x). Give a function g in C (X) such that $g \in Z^{-1}(Z(I))$ but $g \notin I$.
- (e)

(ii) Prove that the closure of any ideal in C (X) is an ideal in C (X).

- Give an example of a maximal ideal in $C(\mathbb{R})$ which is fixed. Give an example of a C^* embedded subset of $\beta \mathbb{N}$, where $\beta \mathbb{N}$ denotes the stone (f) Cech compactification of N.
- Give a continuous function $f: \mathbb{N} \to \mathbb{R}$ such that f cannot be extended to a continuous (g) function g: $\beta \mathbb{N} \to \mathbb{R}$.